
Actually Useful
Product Guide

James Berthoty

Q1 • 2025
Reporting Period

Prepared by

AI Auto-Fixing

03 Report
Introduction 16 Reflections on the

Market

04 Testing
Methodology 17 Vendor Breakdown

05 Overview of
Results

12 How to Choose an
Auto-Fix Vendor

Table of Contents

The AI Code
Security Landscape
As application security companies
frantically re-brand into “your
friendly neighborhood AI AppSec
engineer,” their marketing teams
would have you believe their
product is the all-in-one AI engineer
of your dreams. Before you fire
your entire AppSec team, this
guide will help determine if AI is
ready for the job.

In this report, we’ll assess the different
technical approaches taken by several vendors
to see how close they get to the reality of
deploying automatic code fixes to your
applications and help you decide which one is
the right investment for your security team.

There are two primary use cases in AI and code
security:

 Using AI to do static code analysis 1.
 Using AI to create fixes2.

In this report, we focus primarily on using AI to
create the fixes for already discovered issues.

The Battle for the Future of Code
Security: AI Upstarts vs. Established
Platforms

The early days of ChatGPT led to the rapid launch
of at least five dedicated AI code security
companies: Amplify (2022), Corgea (2023),
DryRun (2022), Pixee (2022), Mobb (2021), and
Zeropath (2024).

As an analyst, I was fortunate to engage in early
conversations with each of these founding teams.
From our interactions, two things were immediately
clear:

 Each of these startups focused on providing
developers with high-quality insights into their
code by fixing the problems of traditional SAST
with AI

1.

The false positive problem - most SAST
findings are false positives

a.

The “Time-To-Fix” problem - it takes much
longer to fix an issue than to discover it

b.

 Each company had a convincing and unique
approach to the right way to use AI in security.

2.

As the value of auto-fixing became clear, it didn’t
take long for all major SAST providers to claim that
“they, too,” do AI auto-fixing. This remains a
lingering question - is AI auto-fixing a big enough
moat to justify a standalone product? In this report,
we’ll answer these questions:

Why does AI auto-fixing matter?1.
What approach to AI auto-fixing is the best?2.
What innovations are happening using AI for
static code analysis?

3.
Prepared by

Latio
The Actually Useful Product Guide P3 • FEB 2025

https://amplify.security/
https://corgea.com/
https://www.dryrun.security/
https://www.pixee.ai/
https://www.mobb.ai/
https://zeropath.com/

The Actually Useful Product Guide P4 • FEB 2025

The final outputs are publicly available for you to assess if helpful. General scores were added for usability,
detections, time taken, and triage. These scores factor only into the “total score” and are meant to get a
feel for how the product works as a whole, as the rest of the report focuses on the fixes.

Testing also occurred across many different kinds of findings and coding languages. There were tests for
Python, Java, Javascript, and Infrastructure-as-Code (Iac) findings. Two findings were known false
positives, which most tools correctly hid from their dashboards. Third-party libraries were used to assess if
the tool provided a fix in the proper context of that library.

A final methodological issue is that this is in a test repo mostly built around very simple and intentionally
vulnerable code. This creates weird patterns, such as when we take a user's SQL query and run it. These
tests intentionally see how an LLM responds to seemingly insecure-by-design issues, but they skew the
repo away from more realistic examples.

Testing Methodology
Vendors were chosen based on their capability to detect or ingest SAST reports and create actual code
fixes for those issues. This excluded vendors like Moderne and Grit, who provide ways to make large-scale
code changes but do not use SAST as the middle ground. It also excluded vendors like Backslash Security,
which offers AI fixing based on examples similar to your code.

Semgrep’s scan results were used as a baseline for code fixing for this study. Semgrep was chosen
because it was the vendors' most widely supported scan engine. This affected two vendors particularly
negatively because they didn’t share the same baseline detections: Snyk and Mobb. Due to the different
baselines, both vendors were excluded from most of the visuals, but the raw results are still available.
Mobb’s Semgrep CE support is in beta. Snyk’s SAST results didn’t have the crossover with Semgrep
necessary to generate enough coverage to have meaningful results.

Auto-fixes were generated using the platforms,
with the final code output added to the shared
Google Sheet's second tab. Scores were then
subjectively assessed by the team at Latio based
on the following factors:

Were unidentified issues also fixed?1.
Were false positives identified?2.
Was the fix presented in a way that integrated
with the overall code base?

3.

Was the fix logical to understand the
suggestion?

4.

Was an elegant solution provided, or at least
guided towards?

5.

https://docs.google.com/spreadsheets/d/1Vd1XbKz0A4YnZhPbDP9ZytIMi0vP6kvisV11X2tap0I/edit?usp=sharing
https://www.moderne.ai/
https://about.grit.io/
https://www.backslash.security/
https://semgrep.dev/
https://snyk.io/
https://www.mobb.ai/

Overview of Results: Agentic
AI Leads in Coverage and
Quality
Raw Results and Scoring

Final Score
(Coverage X Quality)

719

600

473 471
409

336 317

The Actually Useful Product Guide P5 • FEB 2025

https://docs.google.com/spreadsheets/d/1Vd1XbKz0A4YnZhPbDP9ZytIMi0vP6kvisV11X2tap0I/edit?usp=sharing

The Actually Useful Product Guide P6 • FEB 2025

Other approaches led to a clear tradeoff between fix coverage and fix accuracy. Vendors who used a
simple LLM integration typically had high fix coverage, but accuracy was all over the place and never
quite perfect. Conversely, more deterministic vendors would have high fix accuracy, but only for
findings where they had manually built rules.

 Sending the Code and Finding to an LLM - tools in this first category had broad fix coverage

but at the cost of fix quality.

1.

 Deterministic Solutions - tools in this category typically had a high average fix quality but at

the cost of low fix coverage.

2.

 Multi-step Agentic Systems - these tools managed to have high-quality fixes and coverage.3.

There are three general implementations of code fixing, and these approaches aligned well with the
test results:

Test results demonstrated a sizable advantage to vendors who took an agentic
approach to creating auto-fixes. Most vendors had a clear trade-off between fix
accuracy and fix coverage. Still, Corgea and Amplify provided high scan coverage
without an accuracy tradeoff due to their approach of sending specific prompts to
different AI agents to handle code fixes. This allowed their fixes to be accurate
while supporting fixes for even obscure detections.

https://corgea.com/
https://amplify.security/

Arnica Ox Codacy

Sending the Code and
Finding to an LLM

Fix Coverage

Corgea Amplify Pixee Aikido

Tools with simple LLM integrations had broad fix coverage but at the cost of fix quality. LLMs
would generate a fix for any finding, and generally, those fixes were decent. However, it was easy to
see how the quality would decrease the more contextual the code became to large code bases or
any non-standard libraries.

LLMs typically struggled with having enough code context sent to
them to generate accurate or creative fixes.

Overall, we found these tools to be helpful for finding the right direction to go with a fix, but
dangerous to trust blindly. For example, they might parameterize a SQL query, but use the wrong
syntax for the particular library you had chosen. While they’d make some logical changes, they would
often break if you tried to copy and paste them directly and only fixed the exact issue that was called
out, without regard for the application as a whole.

The Actually Useful Product Guide P7 • FEB 2025

77%
71%

88%

69%

76%

41%

53%

Deterministic Solutions
Tools built with deterministic fixes typically had a high average fix quality but at the cost of low fix coverage.
These tools often began with deterministic fixing but have since begun adding LLM fix capabilities.

These tools were clearly more mature for specific languages, scanners, and finding types that likely
reflect their early customers as they built capabilities. For example, it was easy to see where Pixee had a
common pattern for fixing insecure usage of the request library in python. Critically, these vendors have
been expanding into LLM, recognizing the importance of scaling fix coverage.

In general, the biggest benefit of these tools is knowing what the pattern of the fix is going to be, allowing
you to have repeatable approaches to fixing common weaknesses - which is why they might appeal more to
enterprise buyers. The extremely limited sample size is why Mobb was excluded from elsewhere in this
report.

The Actually Useful Product Guide P8 • FEB 2025

Average Fix Quality

Corgea Amplify Arnica Ox Aikido Codacy

9.9
9.7

5.7 5.6

9.1

6.9

10

7.5

https://www.pixee.ai/
https://www.mobb.ai/

Multi-step Agentic Systems

Finally, we’re convinced that tools that dove into agentic architectures
early on have benefited immensely from the approach. These fixes are
often the massive improvements security teams look for. By that, we mean
that these tools usually do much more than fix the immediate issue and
have the rare “surprise and delight” feeling that comes with seeing
unexpected issues get fixed, too.

The Actually Useful Product Guide P9 • FEB 2025

Final Score
(Coverage X Quality)

719

600

473

Arnica

471

Pixee

409

Ox

336 317

Codacy

Here are some of the surprising benefits of code security tools
with agentic architectures:

These agentic solutions were creative in finding additional code context and creating fixes that balanced
developer ease of implementation with security concerns.

In general, these agentic solutions combined LLMs in conjunction with abstract syntax trees to find relevant
data, and those data points were discussed in the context of different guidance from each agent. For
example, relevant functions would be discovered across the code base and then discussed between
different agents, prioritizing both the code and the security tradeoffs, especially considering the context of
different libraries being used. This created holistic fixes that fit the code of the particular application.

The Actually Useful Product Guide P10 • FEB 2025

 Fixing error messages to make them more contextual1.

 For example, several code fixers might suggest providing a list of approved domains but

typically won’t also update the corresponding error message in the context.

a.

 Removing other vulnerabilities that would come from a subsequent scan2.

 In one example, we return the user’s input back to them, but it’s also a SQL injection. AI tools

would see how this is also an XSS vulnerability and fix the return message as well.

a.

 Properly identifying false positives or unfixable issues3.

 One side effect of running agentic discussions is they dissect the murkiness that comes with

something being a false positive or not in the larger application context.

a.

 Being creative also increases code quality itself or refactoring functions of the app that don’t

make sense.

4.

 Most code has opportunities for refactoring where agentic models can improve quality

alongside security if it’s the right situation.

a.

Common Pros & Cons

Great tools here would:

Implement creative solutions that address more
than the immediate vulnerability

Fix not just the code itself but also contextualize
error messages and outputs

Automatically generate fixes for all findings
instead of requiring a ton of clicks

Common mistakes were:

Using the wrong syntax for a library

Providing a half-fix that was overly focused on
the specific vulnerability

Be misled by the SAST finding itself into creating
a fix that didn’t make sense

Provide fixes using the correct syntax for the
application’s libraries

Across all of the tools, here are some basic pros and cons you can use in your evaluations.

The Actually Useful Product Guide P11 • FEB 2025

Not give the LLM enough context to make a
good decision

How to Choose an Auto-Fix
Vendor

The Actually Useful Product Guide P12 • FEB 2025

All diagrams are available here.

Actually Useful Logo Image™

Unlike the picture some quadrant-based approaches tend to paint, the reality of a security buying decision
isn’t so simple - the right tool for one company might be very different than the tool for another.

Instead, we’ve selected vendors based on those best fitting specific use cases to aid your buying decision.
In-depth opinions on each vendor are at the bottom of the article.

https://link.excalidraw.com/l/6qFzFKIJXdd/7HRbuz1HMiI

Simplifying the Complexity of Modern
Security Tooling Buying Decisions

Unlike the picture some quadrant-based approaches tend to paint, the reality of a security buying decision
isn’t so simple - the right tool for one company might be very different than the tool for another.

Instead, we’ve selected vendors based on those best fitting specific use cases to aid your buying decision.
In-depth opinions on each vendor are at the bottom of the article.

The first question to answer when choosing an auto-fix vendor is the specific problem you’re trying to
solve. Here are the most common problems that cause an auto-fixing vendor to be considered:

The Actually Useful Product Guide P13 • FEB 2025

 An enterprise has too large a backlog and isn’t making progress1.

 A mid-market company doesn’t want to waste developer time fixing imaginary issues2.

 Security teams don’t have the code expertise needed to provide relevant guidance3.

On the one hand, most mid-market companies will ultimately only use one scanning tool, so buying a
consolidated choice is a clear advantage to a tool for your tool. On the other hand, the number of false
positives produced by SAST vendors is shocking to first-time application security practitioners.

This problem lies at the heart of the challenge: SAST often finds more problems than it does solutions. For
this reason, a dedicated solution built around providing the solutions can make sense. However, SAST is one
scanning option for many teams wrapped up into larger platforms they’re trying to manage.

Another challenge for the mid-market is that it’s unclear what exactly application security means to first-
time practitioners - some think mostly of Software Composition Analysis (SCA). In contrast, others think
more of Static Application Security Testing (SAST) or Dynamic (DAST). In my eyes, SAST is the best bang
for your security buck. However, there are several companies in the market now that don’t force you to
make that choice.

For the mid-market, there are two choices: purchase a platform with varying degrees of auto-fix maturity or
purchase Corgea or Amplify to focus specifically on doing SAST in the fastest way possible.

Tools built with deterministic engines typically had a high average fix quality but at the cost of low fix
coverage. These tools often began with deterministic fixing but have since begun adding LLM fix
capabilities.

These tools were clearly more mature for specific languages, scanners, and finding types that likely reflect
their early customers as they built capabilities. For example, it was easy to see where Pixee had a common
pattern for fixing insecure usage of the request library in python. Critically, these vendors have been
expanding into LLM, recognizing the importance of scaling fix coverage.

In general, the biggest benefit of these tools is knowing what the pattern of the fix is going to be, allowing
you to have repeatable approaches to fixing common weaknesses - which is why they might appeal more
to enterprise buyers. The extremely limited sample size is why Mobb was excluded from elsewhere in this
report.

The Actually Useful Product Guide P14 • FEB 2025

The Actually Useful Product Guide P15 • FEB 2025

For the enterprise, being a scanner replacement is a
much harder sell than a fixer. Instead, these teams are
looking to accelerate their time to fix with the help of AI.
These are the use cases around which Mobb, Pixee, and
Corgea have built mature offerings. In our assessment, the
hardest part of implementing these tools is deciding how
to surface them into a developer workflow. This integration
challenge is hard enough for the scanning part of the tool,
doing it as an extra layer creates another layer of
challenges.

As for an analyst “who’s going to win the market”
perspective, we love the potential of an AI-first approach
to all application security. We think the long-term
possibility of Corgea and vendors who are also using AI for
detection itself is massive - reimagining security scanning
but built around LLMs. If that doesn’t work, however, AI
auto-fixing will continue to be an important comparative
advantage for ASPM platforms. Here, Amplify has a
distinct advantage in being built around auto-fixing
Semgrep findings, it would be very easy to integrate with a
larger ASPM provider.

Reflections on the
Market

Here are some general takeaways
from this study:

 Agentic AI usage is a differentiator, but it’s too early to tell if it provides any potential

moat - the vendors who invested in this space have created much better fixes and

scanning options than elsewhere. Still, as resources to create these tools become more

common, it’s unclear how long the moat will last.

1.

 The big enterprises are still pretty bad at this. As much as it’s clear that auto-fixes should

be a feature of ASPM, none of the significant SAST players performed very well.

2.

 Validation of the issue and fix is key to success, as well as creativity to fix other relevant

code like errors or HTML output

3.

 We are still far from auto-merging these fixes ourselves, and it’s doubtful we’ll ever get

there. Ultimately, the LLM can only intuit so much of what an application tries to do

unless we run it.

4.

 The LLM-based testing is still very exciting for identifying BOLAs and real issues.5.

 For as much as AI’s capabilities for triaging have been touted, the feature feels very

much in beta from most providers because they don’t surface the logic behind the

reprioritization decision. Sometimes, it makes sense, sometimes, it’s extremely puzzling.

6.

Agentic approaches offer a worthwhile path forward for auto-fixing tools, but we’re still far

away from a friendly neighborhood AI AppSec professional.

The Actually Useful Product Guide P16 • FEB 2025

Vendor
Breakdown

James Berthoty

FEB • 2025

Prepared by

Its urgency calculations seemed
good, but without explanations as to
why something got prioritized or
deprioritized, they can be
challenging to assess.

Corgea’s approach to prompting has
been carefully engineered around an
agentic approach, involving separate
flows for fixes, validations, and
contextually finding relevant
functions and files.

One potential fear could be
indeterministic fixes. However,
in testing, Corgea always fixed
the same issue with the same fix
but didn’t always follow the
same patterns. While other
vendors are very concerned
about this, we think it better fits
reality - there are times to follow
specific patterns, but real code
bases are messy and sometimes
demand messy fixes.

Corgea is building more and
more of a fully featured SAST
platform with some of the
boring enterprise features like
reporting, SLA tracking, and
user permissioning getting
launched. Currently, the
weakest part of the product is
the CI/CD workflow for auto-
fixing findings from a known
scanner.

Corgea was pretty mindblowing in a lot of respects. Before getting to the quality of their auto-fixing, they’ve
also built a robust LLM-based SAST scanner. This scanner, called BLAST, is alongside DryRun and Zeropath
and is one of the only AI scanning engines out there.

The developer experience of Corgea was simple and intuitive, with good explanations alongside the change
summaries to fix an issue. It also supports some of the contextual policy building that’s emerging as a way to
scale out false positives and create scalable custom fixes for specific issues.

The Actually Useful Product Guide P18 • FEB 2025

https://corgea.com/?utm_source=latio-report

Amplify provides everything a business needs to get started with SAST. Built on top of Opengrep, they
provide static results and monitoring like most, but with their agentic system for creating AI fixes. Their
fixes were high-quality and relevant, using the appropriate libraries and suggestions for fixing broader
issues.

One approach to fixing that proved consistently helpful was creativity. In the example above, we take user
input as an SQL query and run it. Most tools struggled to suggest anything for this, but Amplify assumed,
based on context, that it was a user lookup since it exists elsewhere in the application.

From a developer perspective, this approach is more helpful than just erroring out or failing. Amplify’s
approach to prompting has been engineered around an agentic approach, where a developer and security
professional discuss the relevant code snippets and files and determine a solution together. One potential
fear would be indeterministic fixes; however, in my testing, Amplify always fixed the same issue with the
same fix but didn’t always follow the same patterns.

Amplify’s UI is built mostly around usability, especially for developer teams looking to get started with SAST
without all the traditional overhead of running these tools. Developers are given quick views into pull
request vulnerabilities and if new vulnerabilities are getting added or prevented. Currently, the weakest part
of the platform is the UI for sorting and prioritizing large amounts of findings.

The Actually Useful Product Guide P19 • FEB 2025

https://amplify.security/?utm_source=latio-report

The Actually Useful Product Guide P20 • FEB 2025

Arnica is the first larger platform to appear on this list. They provide a single orchestration platform for SAST,
SCA, IaC, and Secret scanning, focusing on developer workflows. Arnica’s workflow orchestration is
extremely impressive, with a small example being their ability to Slack responsible developers automatically
for new code pushes rather than the generic Slack channels most tools use.

Arnica’s scoring this high reinforces the hard reality that some of the more sophisticated approaches to this
problem just aren’t worth doing. Arnica uses smart contextual prompting to get relevant fixes (i.e., not
sending the bare minimum of code to the LLM), but doesn’t do anything crazy with custom models or
reinforcement testing. While some tools are now heavily emphasizing custom policies or otherwise, these
will probably also be easy to integrate as they amount to little more than custom parts of the prompt.

Arnica’s fixes were often not quite as elegant as some of the dedicated solutions but typically followed
similar fix patterns for limiting allowed queries. Every once in a while, things would get really funky or
verbose, but we believe this is a byproduct of this less-deterministic approach. Additionally, Arnica hooks
into your own LLM or OpenAI via an API key. For an idea of costs, we ran approximately 40 fixes through
different vendors and GPT-4, which cost 3 cents.

Arnica continues to be a great value proposition for integrated scanning focused on getting shift left done
properly. The weakest part of the platform is navigating the UI at scale through numerous projects.

https://www.arnica.io/?utm_source=latio-report

The Actually Useful Product Guide P21 • FEB 2025

Pixee started ambitiously focused on developer-first security - where the helpful Pixee bot would raise PRs
with auto-fixed vulnerabilities that developers simply had to merge. Unfortunately, enterprise environments
need a little more prodding than GitHub bots tend to offer. Pixee has since built a much more standard
interface for enterprises to get fixes to their developers.

The team at Pixee is highly focused on merge rates and triage capabilities. These focuses address two core
issues with developer adoption: wasting time with bad fixes or needless fixes. Pixee will also occasionally
suggest using secure libraries for common functions - such as their “secure requests” replacement for
requests. This helps create repeatable fixes for common issues, but at the cost of a slightly larger learning
curve as developers understand the libraries. They also integrate with a wide variety of scanners used by
enterprises.

The team is early in its move to using AI as an engine for generating fixes, but these results have proven
very promising. One thing that can’t be overstated is their team’s commitment to developers first. The
weakest part of the platform is navigating the fixes in the UI as the app was initially designed to be used
primarily via the Github app. It’s also worth noting that their triage capabilities are more advanced for other
scanning engines than Semgrep due to their focus on enterprise, so those capabilities weren’t fully
explored.

Ox is easily the most comprehensive platform on this list, providing most scanners you could want alongside
integrations and workflows to most other providers. If you can think of a security test, Ox does it or integrates
with it. Ox’s implementation of AI auto-fixing is pretty basic but once again reflects the reality that GPT-4o is a
pretty good model.

It seemed that most of Ox’s issues stemmed from trying to send minimal code to the LLM - likely due to privacy
concerns from larger customers (for clarity, you also use your API key for easy setup). This minimal code led to
some fixes that either missed larger contexts or the language nuances of specific libraries.

While Ox performed in the middle of the pack here, the
platform is doing so much that it really demonstrates how
simple approaches still work well.

The Actually Useful Product Guide P22 • FEB 2025

Aikido has recently been investing massively in its AI capabilities, with the feature being launched only a
couple of months ago. Their results are rapidly improving in a way that shows they’ll be a major player here
very shortly. Most importantly, while their fix coverage was low, their accuracy rivaled the best scores we
had available - that’s because the team has been rolling out the fixes on a rule-by-rule basis to prioritize
accuracy.

Aikido continues to be my first recommendation to mid-market security teams looking for encompassing
developer-first testing. The platform's weakest point is that it lacks the workflow or integration capabilities of
most other ASPMs targeting enterprise accounts.

The Actually Useful Product Guide P23 • FEB 2025

Codacy provides developer-first security testing alongside code quality and test coverage similar to
Sonarqube. Their team is rapidly maturing the platform's security capabilities, and AI auto-fixing is an
interesting place. However, a significant consideration is that the AI auto-fixing capabilities here also extend
into code quality findings, which can bring more overall developer value. This put them at a disadvantage for
this testing, but they have broader long-term developer capabilities.

Part of their prompt clearly tells the AI to try and do a one-line code fix to best fit within pull request workflows.
This creates fixes that are sometimes clever and, at other times, pretty funny or unrealistic. What matters,
though, is that as they mature the specificity of the prompt and where to surface results, the workflow is
already built for scaling into the future.

The Actually Useful Product Guide P24 • FEB 2025

Mobb has heavily focused on enterprise use cases for auto-fixing, which is why they’re
asterisked on this report - their support for Semgrep Community Edition is in beta, no small part
of that is that most organizations at large scale are not using Semgrep compared to the bigger
scanners like Checkmarx or Snyk.

Mobb also focused early on providing high-quality deterministic fixes that didn’t use AI very
much. This is aligned with the enterprise purpose, where if a code fix suffers from the
occasional hallucination or missed fix, the consequences can be more severe due to the scale.
Mobb is slowly launching pure AI-based fixes and categorizing them in a way that shows their
increased volatility and whether they work or not.

The final results also reflect the approach, where Mobb had high fix accuracy for deterministic
fixes, but pure AI was very early in development and not very useful. Mobb’s test results should
be understood extremely contextually here due to the lack of Semgrep support.

The Actually Useful Product Guide P25 • FEB 2025

Semgrep’s AI is in an interesting place. Of the larger
incumbent SAST players, they’re the furthest along
in terms of fix quality and coverage; however, the
current product experience is disjointed. Semgrep’s
triaging and fix guidance in their UI was lacking, but
most of their development effort has gone towards
the code fix quality in pull requests. When testing
the fixes in pull requests, coverage was limited (it’s
possible we were experiencing a bug), but the fixes
were roughly equivalent with the LLM approach.

When it comes to their methodology, Semgrep takes
what I’d call an “almost agent based” approach.

The LLM creates a fix, and then another agent
approves or rejects it until the system creates an
acceptable space. It’s possible this is one reason
we experienced a lack of coverage - the autofix
validator may have continued failing due to the
nature of the code being insecure by design.

Additionally, the AI auto triage didn’t find any false
positives (despite one finding being a Django
template issue in a repo that doesn’t use Django,
which was categorized as a True positive). While
this testing didn’t focus on triage capabilities
specifically, nothing stood out as particularly
strong.

While some of this summary is negative, there’s a lot of potential in the memory feature for teams heavily
invested in Semgrep’s ecosystem. Semgrep works best for teams that are pretty mature - they know what
they’re looking for and what the fixes look like. The ability to customize fixes in human language, like “when
you’re using SQL, use this annotation,” will be a great fit for those teams. The greatest challenge with Semgrep
is learning the notation for custom rules, and AI does a lot to solve that problem.

The Actually Useful Product Guide P26 • FEB 2025

https://semgrep.dev/blog/2024/the-tech-behind-semgrep-assistant/+

Of all the tests done here, Snyk needs the most qualifiers for two reasons:

 Snyk only provides a fix if, upon a rescan, the issue is remediated by the fix.1.
 Semgrep was the baseline scanner used for testing2.

Because of the re-testing issue, we can instead talk about the autofixing approach more broadly and
qualitatively. From a workflow perspective, Snyk provides five potential AI solutions in the IDE that require
clicking through to find the best fit. Typically, the first fix was pretty lacking, like in the above example where the
first fix suggested simply changing HTTP to HTTPS, but the fourth fix correctly identifies you’d need a
public/private key pair to make it work.

The significant difference with Snyk here is that the AI auto-fix happens entirely inside the developer IDE.
Building things this way is pretty risky, in our opinion, due to the struggle of getting developers to adopt IDE
extensions. However, it certainly would be the best place to access and apply an auto-fix, and saves on
compute costs using cloud-hosted models. Snyk is working on adding the code fixes inside pull requests,
which we think will provide a better workflow.

The main issue we had testing Snyk’s approach is
that In the context of the test repo, most code fixes
would still get picked up on a subsequent SAST scan
because they’re intentionally insecure things. For
example, if you add a list of approved commands for
command injection, it’s still a command injection.
While fixes might improve them in a certain way,
they need to be very creative to remove the
vulnerability altogether. The second challenge, that
Semgrep was the baseline scanner, reduced the
crossover of results that could be fixed. Only four
scanning results were shared between the tools.

The Actually Useful Product Guide P27 • FEB 2025

Apiiro
Apiiro doesn’t yet
provide AI auto-
fixes fixes for
SAST findings

We weren’t able
to get Qwiet
tested in time, but
will cover them in
a re-test

Qwiet

Cycode
Cycode has AI
auto-fix and SAST
capabilities,
however we
couldn't get a test
environment in
time for this
report.

OTHERS

Backslash
Backslash security
has great LLM-
generated fix
guidance, but it
doesn’t provide
an actual code
change

Kodem
Kodem provides
runtime SAST with
remediation
guidance but not
code fixes

The Actually Useful Product Guide P28 • FEB 2025

Other great SAST providers weren’t included,
here is a brief synopsis of why:

CodeQL didn’t
have meaningful
test coverage, but
results can be
seen here.
Generally was on
par with basic
LLM solutions.

CodeQL

https://github.com/latiotech/insecure-kubernetes-deployments/pull/86

Thank you!
Thank you for reading our first industry report! We’re excited to continue delivering high
quality actually useful product assessments that go deeper than any other reports in the
industry. Your support is what makes it all possible! Follow our work at
https://pulse.latio.tech or browse the full catalogue of vendors at https://list.latio.tech

james@latio.tech
list.latio.tech
Raleigh, NC

The Actually Useful Product Guide P29 • FEB 2025

http://list.latio.tech/

The Actually Useful Product Guide Q1 • FEB 2025

